Feature Fusion and Information Supervision Consistency for Object Detection
نویسندگان
چکیده
The inconsistency between classification and regression is a common problem in the field of object detection. Such may lead to undetected objects, false detection, boxes overlapping detection results. It has been determined that mainly caused by feature coupling lack information regarding interactions heads. In this study, characteristics spatial invariance were used, ability fit data distribution was enhanced fully connected layers. A fusion module (FFM) proposed order enhance capabilities model’s extractions. This study also further considered loss functions function (RMAE) based on mean absolute error (MAE) for purpose improving location quality. Furthermore, solve heads, an (Lin) added basis module. Then, evaluate effectiveness methods, network (FMRNet) trained RetinaNet. experimental results demonstrated study’s methods surpassed accuracy some existing detectors when FMRNet adopted. confirmed had problems overlapping.
منابع مشابه
Multi Sensor Fusion for Object Detection Using Generalized Feature Models
This paper presents a multi sensor tracking system and introduces the use of new generalized feature models. To detect and recognize objects as selfcontained parts of the real world with two or more sensors of the same or of several types requires on the one hand fusion methods suitable for combining the data coming from the set of sensors in an optimal manner. This is realized by a sensor fusi...
متن کاملFeature-Level based Video Fusion for Object Detection
Fusion of three-dimensional data from multiple sensors gained momentum, especially in applications pertaining to surveillance, when promising results were obtained in moving object detection. Several approaches to video fusion of visual and infrared data have been proposed in recent literature. They mainly comprise of pixel based methodologies. Surveillance is a major application of video fusio...
متن کاملFusion of Global and Local Information for Object Detection
This paper presents a framework for fusing together global and local information in images to form a powerful object detection system. We begin by describing two detection algorithms. The first algorithm uses independent component analysis (ICA) to derive an image representation that captures global information in the input data. The second algorithm uses a part-based representation that relies...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملFeature Detection of an Object by Image Fusion
In this paper, we propose a novel method for feature detection of an object by fusion of range and intensity images. For this purpose, we have developed a data acquisition system with a laser source and camera interfaced with Silicon Graphics machine. 3-D mesh representation of the surface of the object is obtained from the acquired range images. Extraction of structural features from the range...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2023
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics12092034